Regulation of Hypothalamic Neuronal Sensing and Food Intake by Ketone Bodies and Fatty Acids
نویسندگان
چکیده
Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.
منابع مشابه
Fatty acid-induced astrocyte ketone production and the control of food intake.
Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis...
متن کاملRole of VMH ketone bodies in adjusting caloric intake to increased dietary fat content in DIO and DR rats.
The objective of this study was to determine the potential role of astrocyte-derived ketone bodies in regulating the early changes in caloric intake of diet induced-obese (DIO) versus diet-resistant (DR) rats fed a 31.5% fat high-energy (HE) diet. After 3 days on chow or HE diet, DR and DIO rats were assessed for their ventromedial hypothalamic (VMH) ketone bodies levels and neuronal ventromedi...
متن کاملRole of VMH ketone bodies in adjusting caloric intake to increased dietary fat content in
25 26 The objective of this study was to determine the potential role of astrocyte-derived ketone bodies 27 in regulating the early changes in caloric intake of diet induced-obese (DIO) vs. diet resistant 28 (DR) rats fed a 31.5% fat high-energy (HE) diet. After 3 d on chow or HE diet, DR and DIO rats, 29 were assessed for their ventromedial hypothalamic (VMH) ketone bodies levels and neuronal ...
متن کاملEvidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice.
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on ...
متن کاملHypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation
Ketone bodies have been shown to transiently stimulate food intake and modify energy homeostasis regulatory systems following cerebral infusion for a moderate period of time (<6 hours). As ketone bodies are usually enhanced during episodes of fasting, this effect might correspond to a physiological regulation. In contrast, ketone bodies levels remain elevated for prolonged periods during obesit...
متن کامل